APPLE CLOCK

APPLE CLOCK

© 1978 by MOUNTAIN HARDWARE, INC.

TABLE OF CONTENTS

PAGE
INDEX OF TABLES1
INTRODUCTION2
INSTALLATION3
THE BATTERY4
SETTING THE TIME5
READING THE TIME11
Quick Reads Displaying the Time Other Display Formats
ELAPSED TIME20
INTERVAL TIMER22
THEORY OF OPERATION23
The Hardware Clock Counters ROM Access Regulator Circuit Interrupts
The Software ROM Firmware Changing ROMS
SETTING THE FREQUENCY30
SCHEMATIC31
LIADDANITY 22

INDEX OF TABLES

P	AGE
QUICK READS	11
RE-ENTRY PROCEDURE	11
INTEGER TIME STRING MANIPULATION	15
APPLESOFT TIME STRING MANIPULATION	15
APPLESOFT AM/PM	18
INTEGER AM/PM	18
PROGRAM CHANGES WITH DOS	19
DEVICE SELECT ADDRESSING	25
CLOCK COMMANDS	26
SLOT #4 EXAMPLE	27
TOP BYTE OF TIME CONFIGURATION	28
ROM MEMORY USE	29

INTRODUCTION

WELCOME TO THE WORLD OF REAL-TIME!

Your Mountain Hardware Apple ClockTM extends the reach of your Apple II* computer by adding the dimension of real time and date in intervals of from 1 millisecond to a little over one year.

On-board battery power keeps the clock running for periods of up to 4 days when your computer is turned off, either intentionally or due to a power outage. If you have down times longer than 4 days, refer to the section in this manual entitled "The Battery".

The Apple Clock is very easy to use because it contains an on-board ROM. This ROM contains software making it easy to obtain the time and date whether you are using Integer BASIC, Applesoft, or Assembly language.

Let your imagination guide you to the many ways in which your Apple Clock can be used.

^{*}Apple II is a trademark of Apple Computer Company.

INSTALLATION

PLUG IN AND GO!

Installing the Apple Clock in your computer is very easy.

- 1. Turn your computer OFF.
- 2. Remove the top cover from the computer.
- 3. Take your Apple Clock and clip the battery connector onto the top of the battery.
- 4. Plug the Apple Clock into any empty slot on the back of the Apple computer board. You may use any slot EXCEPT SLOT #0. We recommend SLOT #4.
- 5. Be sure the Apple Clock is firmly seated in its socket.
- 6. Leave the cover off for the moment. You will need to have access to the switches on the Apple Clock when you set it.
- 7. Refer to the section in this manual called "Setting the Time".
- 8. Once the clock has been set, be sure you have changed the 'WRITE PROTECT' switch on the clock according to the instructions in "Setting the Time".
- 9. YOU ARE FINISHED! You may now replace the cover on your computer.

You are now ready to start reading the time. ONE THING TO REMEMBER - The on-board battery on the clock will take four (4) days to completely charge up. Therefore, leave your computer on continuously for at least four (4) days to completely charge your battery. If this is not done, you cannot be sure that the battery will keep the clock running when you shut your computer off. Once it is charged, however, the clock will keep running for up to 4 days when you shut your computer power off.

THE BATTERY

The Apple Clock is supplied with a rechargeable NiCad battery to keep the clock running when the computer is turned off, or when the power fails. This battery is attached to the Apple Clock on the back side of the board. The battery powers the clock circuitry on the board permitting the clock to keep correct time for periods up to 4 days, if it is fully charged.

To fully charge the battery, the Apple computer must be left on for at least 4 days.

This initial charging time of 4 days is designed to maximize the life of the battery. As a general guideline, the battery should charge 2 hours for every 1 hour of use. The battery life is several years, but should be replaced if its performance drops significantly. You may obtain replacements anywhere batteries are sold.

If you anticipate that your computer is going to be turned off for periods longer than 4 days, you may incorporate a larger capacity battery. This can be done by clipping an additional battery clip to the one mounted on the Apple Clock. The two wires from this clip can be run outside the case of the Apple computer and connected to a larger battery. The size of the battery is unimportant, however you must use a battery with a voltage between 7-10V DC.

The battery is intended to support the clock if power fails, or if the computer is turned off for short periods of time. Your computer's lifetime will not be affected by leaving it on continually, and may even be increased. The power consumed by the Apple computer is less than an ordinary light bulb. Consequently we recommend that the Apple computer be left on continually. The clock's battery will keep the clock running if the power fails in your building, or if you turn the computer off for short periods of time (less than 4 days).

SETTING THE TIME

To set the time with the supplied cassette:

- Load Applesoft into your system.
- 2. Load the "Set the Time" program supplied with your Apple Clock from cassette. (See Note.)
- 3. Change the 'WRITE PROTECT' switch to the 'WRITE' position. It is the top switch on the board. Press the switch down on the right side.
- 4. Set the Leap Year switch. If the current year is a leap year, press the switch on the LEFT. Press the switch down on the RIGHT if it is not a leap year. The leap year switch is the second switch down from the top.
- 5. Type 'RUN'.
- 6. Answer the questions that appear on the screen appropriately.
- 7. After the clock is set, 'WRITE PROTECT' it by pressing the 'WRITE PROTECT' switch down on the LEFT. This prevents the clock from being changed accidently.

The above procedure will need to be performed each January before the 20th of the month. If daylight-saving time is in effect in your area, update the clock as needed.

Store the "Set the Time" cassette in a secure spot for future use. A listing of the "Set the Time" cassette is provided here for your reference. Also listed is the assembly language program used by "Set the Time" (Lines 5000 through 5090).

Note: If you are not using an Applesoft card but are using the Apple Disk, you must type 'CALL 3314' before running the program.

WRITE PROTECT SWITCH

The Apple Clock WRITE PROTECT switch must be in the PROTECT (WP) mode at all times EXCEPT when setting the clock. Otherwise the clock can change time when the computer power is turned off.

Put the switches in these positions when:


```
REM **** MOUNTAIN HARDWARE'S APPLE CLOCK
   REM **** COPYRIGHT 1978
             SET THE TIME APPLESOFT
   REM
   REM **** ADD OR CHANGE THESE LINES FOR DISK SYSTEM
   REM
7
   REM
             20 D$=""
                       WHERE D$="CONTROL D"
8
             21 PRINT D$; "NOMON I,O,C"
   REM
           3020 PRINT D$;"PR#";SLOT
9
   REM
           3025 PRINT D$;"IN#";SLOT
10
    REM
           3035 PRINT D$; "PR#0"
18
    REM
20
    REM
           3040 PRINT D$:"IN#0"
24
    REM
26
    REM
28
    REM
30
    CALL
          - 936
40
    VTAB 10
    PRINT "MOUNTAIN HARDWARE'S APPLE CLOCK"
50
60
    VTAB 13
    PRINT "DISPLAY OR SET THE TIME PROGRAM"
70
71 : PRINT : PRINT : PRINT "SEE LINES 5 THRU 10 FOR DI
     SK SYSTEM"
75
    PRINT : PRINT
    INPUT "INPUT THE CLOCK'S SLOT # "; SLOT
76
80
    PRINT : PRINT
    INPUT "DO YOU WANT TO SET THE TIME (Y ON N)"; I$
90
    IF I$ = "N" THEN CALL - 936: GOTO 2032
95
100
     REM
110
          **** POKE IN THE ADVANCEROUTINE AT LOCATION
     REM
     $1000
120
     REM
     FOR I = 1 TO 68
130
140
     READ J
150
     POKE 767 + I.J
     NEXT I
160
300
     PRINT
301
     PRINT "GIVE THE CURRENT TIME PLUS 30 SECONDS"
302
     PRINT
     INPUT "INPUT THE MONTH (1-12) "; MTH
310
320
     INPUT "INPUT THE DAY (1-31) ";D
     INPUT "INPUT THE HOUR (0-23) ";H
330
     INPUT "INPUT THE MINUTE (0-59) ";M
340
350
     INPUT "INPUT THE SECONDS (0-59) ":S
360
     PRINT
           "HIT RETURN WHEN YOU HAVE SET THE LEAP"
365
     PRINT
     PRINT "SWITCH CORRECTLY, AND ARE SWITCHED FOR"
370
380
     INPUT "WRITING TO THE CLOCK ": 1$
390
     PRINT: PRINT
```

```
500
      REM
501
      REM *** CHECK LEAP YEAR SWITCH
502
      REM
     REM
            IF L=1 THEN IT'S A LEAP YEAR
505
510 L = PEEK (49280 + 16 * SLOT)
511 L = INT (L / 64)
     IF L > 1 THEN L = L - 2
512
600
      REM
601
      REM **** FIND DAYS TO DATE -- DTD --
602
     REM
605 DTD = 0
      FOR I = 1 TO MTH
610
620
     READ J
630 DTD = DTD + J
640
     NEXT I
650 DTD = DTD + D - 1
660
      IF L = 1 AND MTH > 2 THEN DTD = DTD + 1
700
     REM
     REM **** CALCULATE SECONDS TO DATE --STD --
701
702
     REM
710 \text{ STD} = \text{DTD} * 86400 + \text{H} * 3600 + \text{M} * 60 + \text{S}
.800
     REM
     REM **** PREPARE SECONDS FOR CLOCK
801
802
     REM
810 TEMP = 896: REM RAM STORAGE AREA
820 S0 = INT (STD / 2 \wedge 20)
    POKE TEMP, SO
825
830 STD = STD - SO * 2 \wedge 20
840 \text{ S1} =
           INT (STD / 2 ^ 12)
    POKE TEMP + 1,S1
850
860 \text{ STD} = \text{STD} - \text{S1} * 2 \wedge 12
870 S2 = INT (STD / 2 \wedge 4)
880 POKE TEMP + 2,S2
890 STD = STD - S2 \frac{1}{2} 2 \wedge 4
     POKE TEMP + 3.STD * 16
900
910
     REM
     REM **** ALSO SAVE N2 AND N7
911
912
     REM
     POKE TEMP + 4, SLOT * 16 + 2
920
     POKE TEMP + 5.SLOT * 16 + 7
930
1000
      REM
1001
      REM *** STOP CLOCK AND CALL ADVANCE ROUTINE
1002
      REM
1005 SR = 49280 + SLOT * 16 + 5
1006 \text{ SP} = 49280 + \text{SLOT} * 16 + 6
1010 I = PEEK (SP)
1020 CALL 768: REM CALL THE MACHINE LANG ADVANCE ROU
     TINE
2000
      INPUT "HIT RETURN AT EXACT TIME ":1$
2010 I = PEEK (SR): REM
                              START CLOCK
      CALL - 936
2020
2030
      PRINT "DON'T FORGET TO WRITE PROTECT THE CLOCK"
      VTAB 24
2031
2032
      VTAB 24: PRINT "
                              HIT RESET TO STOP PROGRAM"
```

```
3000
       REM
       REM **** DISPLAY THE TIME
3001
       REM
3002
       VTAB 6: PRINT "
3005
                           MOUNTAIN HARDWARE'S APPLE CLOCK
3006
       PRINT : PRINT "
                                         THE TIME IS"
3010
       VTAB 22
       IN# SLOT
3020
3025
       PR# SLOT
       INPUT " ":I$
3030
3040
       IN# 0
3045
       PR# 0
       VTAB 12: HTAB 8 PRINT "; 1$
3050
3060
3070
       GOTO 3010
4999
       REM *** ADVANCE SUBROUTINE DATA
5000
       REM
       DATA 72,8,138,72,152,72,174,132
5010
       DATA 3,172,133,3,189,128,192,205
DATA 130,3,208,8,189,129,192,205
5020
5030
       DATA 131,3,240,6,185,128,192,76
DATA 12,3,202,202,200,189,128,192
5040
5050
       DATA 41,31,205,128,3,208,8,189
5060
       DATA 129,192,205,129,3,240,6,185
DATA 128,192,76,37,3,104,168,104
5070
5080
5090
       DATA 170,40,104,96
       REM **** MONTH DATA
5999
6000
       DATA 0,31,28,31,30,31,30,31,31,30,31,30
```

```
1 * MOUNTAIN HARDWARE'S
                   2 * APPLE CLOCK
                     * ADVANCE ROUTINE
                   4 * FOR SETTING THE CLOCK
                     * COPYRIGHT 1978
                     * GARY MUHONEN
                   7
                   8
                     * SYSTEM EQUATES
                   9 *
                  10 DS
                             EQU
                                    $C080
                                             ; DEVICE SELECT
                  11 DS1
                             EQU
                                    $C081
                                             :DEV SEL +1
                  12 TO
                                             ;TEMP STORAGE
                             EQU
                                    $0380
                  13 T1
                             EQU
                                    $0381
                                                FOR TIME
                  14 T2
                             EQU
                                    $0382
                                                COMPARISON
                  15 T3
                             EQU
                                    $0383
                  16 T4
                                    $0384
                             EQU
                  17 T5
                             EQU
                                    $0385
                  18 *
                  19 * PROGRAM STARTS AT $0300
                  20 *
                  21
                             ORG
                                    $0300
                  22
                             OBJ
                                    $5000
                  23
                  24 *
                        SAVE REGISTERS
                   25
0300 48
                   26
                             PHA
0301 08
                             PHP
                  27
0302 8A
                   28
                             TXA
0303 48
                   29
                             PHA
0304 98
                             TYA
                   30
0305 48
                             PHA
                   31
                   32 *
                   33 *CHECK LOWEST TWO BYTES OF TIME
                   34 *AND INCREMENT AS NECESSARY
                   35 *
36 I2
0306 AE 84 03
                                    T4
                             LDX
                                            ;N2
0309 AC 85 03
                   37
                             LDY
                                    T5
                                            :N7 FOR ADV1
030C BD 80 CO
                                            ;LOAD TIME2 FROM CLOCK
                   38 C2
                             LDA
                                    DS,X
030F CD 82 03
                   39
                             CMP
                                    T2
                                            DOES IT EQUAL DESIRED?
                  40
0312 D0 08
                             BNE
                                    Al
                                            ; NO, GO ADVANCE
0314 BD 81 CO
                  41
                                            ; YES, NOW LOAD TIME3
                             LDA
                                    DS1,X
0317 CD 83 03
                  42
                             CMP
                                    T3
                                            :DOES IT EQUAL DESIRED
031A F0 06
                   43
                                            ;YES, GO ON TO NEXT TIME
                             BEQ
                                    IO
                  44 A1
                                            ; NO, ADVANCE CLOCK (ADV1)
031C B9 80 C0
                             LDA
                                    DS,Y
031F 4C 0C 03
                  45
                                            ;GO BACK TO CHECK TILL TIME DESIRED
                             JMP
                                    C2
```

```
46 *
                   47 *CHECK HIGHEST TWO BYTES OF TIME
                   48 *AND INCREMENT AS NECESSARY
                   49 *
0322 CA
                   50 IO
                              DEX
                                     :SET X TO TIMEO SPOT
0323 CA
                   51
                              DEX
0324 C8
                   52
                              INY
                                     SET Y TO ADV2
0325 BD 80 CO
                   53 CO
                              LDA
                                     DS,X
                                             ;LOAD TIMEO
0328 29 1F
                   54
                              AND
                                     #$1F
                                             STRIP OFF LEAP YEAR AND INTRPT BITS
032A CD 80 03
                   55
                              CMP
                                     T0
                                             ;DOES IT EQUAL DESIRED?
032D D0 08
                   56
                              BNE
                                     A2
                                             ; NO, GO ADVANCE
                   57
58
032F BD 81 CO
                                            YES, CHECK TIME1 DOES IT EQUAL DESIRED?
                              LDA
                                     DS1,X
0332 CD 81 03
                              CMP
                                     T1
                   59
60 A2
0335 F0 06
                              BEQ
                                     END
                                             ;YES, WE'RE DONE
0337 B9 80 C0
                              LDA
                                    DS,Y
                                             ; NO, ADVANCE CLOCK (ADV2)
033A 4C 25 03
                   61
                              JMP
                                     CO
                                            :GO BACK AND TRY AGAIN
                   62 *
                   63 *DONE.
                              SO RECOVER REGS AND RETURN
                   64 *
033D 68
                   65 END
                              PLA
033E A8
                   66
                              TAY
033F 68
                   67
                              PLA
0340 AA
                   68
                              TAX
0341 28
                   69
                              PLP
0342 68
                   70
                              PLA
0343 60
                   71
                              RTS
```

⁻⁻⁻ END ASSEMBLY ---

READING THE TIME

QUICK READS

The following tricks may be used to quickly read the time. They simply print the time on the screen. TRY THEM!

MONITOR	CTRL * n K
INTEGER	IN#n
APPLESOFT	IN#n
RESET to stop. the clock's slot	number (1-7)

Table 1
QUICK READS

To get back into BASIC after hitting RESET, use one of the following procedures.

BASIC	COMMAND
Integer	CTRL
Integer with DOS*	3DØG
Integer with Applesoft Card (Switch down)	CTRL C
Integer with Applesoft Card (Switch down) and DOS	3DØG
Applesoft - Cassette	ØG
Applesoft and DOS	3DØG
Applesoft Card (Switch up) and DOS	3DØG

Table 2
RE-ENTRY PROCEDURE

^{*}DOS stands for Disk Operating System.

DISPLAYING THE TIME

The following four programs display the date and time as one line centered on the screen. Take the time to become familiar with these programs. They can easily be incorporated into programs you write later. We suggest you read the sections on Strings in the Applesoft BASIC Manual and the Apple II BASIC Programming Manual.

It is generally a good practice to set the SLOT number the clock is in at the very beginning of a program. Line 10 of the program demonstrates this. Elsewhere in the program, use SLOT instead of the number (2,3...). Later, if you move the clock to a different slot, you need change only one line, instead of searching for all the places where the number was specified.

When using Integer BASIC, it is necessary to dimension the strings. Applesoft does not require this.

Lines 40 through 90 of the Integer BASIC program without DOS should be used when reading the time from the clock. Leaving out Line 50 (PR#SLOT) will cause the time to be printed on the screen when an INPUT (Line 70) is done. The time (T\$) is passed to BASIC in the following format:

MONTH/DAY HOUR; MINUTE; SECOND. FRACTION 03/04 10:13:14.123

When actually doing the input statement (INPUT " ", T\$), note that a space is printed to the clock board. This is used so that the data returned from the INPUT statement is the same between Applesoft and Integer BASIC.

There is one difference between the INPUT statement in Applesoft and Integer BASIC.

With Integer BASIC, use

INPUT " ". T\$

With Applesoft, use

INPUT " "; T\$

- O REM
- *** INTEGER BASIC WITHOUT DOS *** 3 REM
- 5 REM
- 10 SLOT=4: REM SET THE SLOT#
- 20 DIM T\$(25): REM DIMENSION THE TIME STRING
- 30 CALL -936: REM CLEAR THE SCREEN
- 40 IN#SLOT: REM SET INPUT TO CLOCK BOARD
- SET OUTPUT TO CLOCK 50 PR#SLOT: REM
- 60 VTAB 23: REM PUT CURSOR AT BOTTOM OF SCREEN
- 70 INPUT " ",T\$: REM OBTAIN THE TIME 80 IN#0: REM RESTORE INPUT TO KEYBOARD
- 90 PR#0: REM RESTORE OUTPUT TO CRT
- 100 VTAB 12: TAB 10: REM CENTER THE OUTPUT
- 110 PRINT T\$: REM OUTPUT TIME TO THE SCREEN
- 120 GOTO 40: REM READ TIME AGAIN
- REM ******* 0 TIME
- REM *** APPLESOFT WITHOUT DOS ***
- REM
- 10 SLOT = 4: REM SET THE SLOT NUMBER
- HOME : REM 20 CLEAR THE SCREEN
- IN# SLOT: REM SET INPUT TO CLOCK BOARD 30
- 40 SET OUTPUT TO CLOCK BOARD PR# SLOT: REM
- 50 VTAB 23: REM PUT CURSOR AT BOTTOM OF SCREEN
- INPUT " ";T\$: REM OBTAIN THE TIME 60
- 70 IN# 0: REM RESTORE INPUT TO KEYBOARD
- 80 PR# 0: REM RESTORE OUTPUT TO CRT
- 90 VTAB 12: HTAB 10: REM CENTER THE OUTPUT
- PRINT T\$: REM OUTPUT THE TIME 100
- GOTO 30: REM READ TIME AGAIN 110

Things change when DOS (Disk Operating System) is active at the time you are running the program. Read your Disk Operating Manual, especially, "Use of the Disk Operating System From Within a Program".

A good programming technique is to set D\$ equal to a CONTROL D, as in Line 20. Then use D\$ wherever a CONTROL D is required. Line 30 prevents the commands IN# and PR# from being printed to the screen when they are executed.

Compare the programs with DOS and without DOS as you will probably be using both versions. The main difference is that when DOS is active, the IN and PR statements are formatted differently.

- O REM ******* TIME *******
- 4 REM *** INTEGER BASIC WITH DOS ***
- 5 REM
- 10 SLOT=4: REM SET CLOCK SLOT#
- 20 D\$="": REM D\$="CONTROL D"
- 30 PRINT D\$; "NOMONI,O,C": REM PRINTING ON SCREEN PREVENT DISK COMMAND FROM
- 35 DIM T\$(25): REM DIMENSION TIME ARRAY
- 40 CALL -936: REM CLEAR THE SCREEN
- 50 PRINT D\$;"IN#";SLOT: REM 60 PRINT D\$;"PR#";SLOT: REM SET INPUT TO CLOCK BOARD
- SET OUTPUT TO CLOCK BOARD
- 70 VTAB 23: REM PUT CURSOR AT BOTTOM OF SCREEN
- 80 INPUT " ",T\$: REM OBTAIN THE TIME 90 PRINT D\$;"IN#0": REM RESTORE INPUT TO KEYBOARD
- 100 PRINT D\$; "PR#0": REM RESTORE OUTPUT TO CRT
- 110 VTAB 12: TAB 10: REM CENTER OUPUT
- 120 PRINT T\$: REM OUTPUT TIME TO SCREEN
- 130 GOTO 50: REM READ TIME AGAIN
 - REM ****** TIME
- 4 REM *** APPLESOFT WITH DOS ***
- 5 REM
- 10 SLOT = 4: REM SET THE SLOT NUMBER
- 20 D\$ = "": REM D\$=" CONTROL D"
- PRINT D\$; "NOMONI,O,C": REM KEEP DISK COMMANDS FRO M PRINTING
- HOME: REM CLEAR THE SCREEN 30
- 40
- PRINT D\$;"IN#";SLOT: REM SET INPUT TO CLOCK PRINT D\$;"PR#";SLOT: REM SET OUTPUT TO CLOCK 50 SET OUTPUT TO CLOCK
- VTAB 23: REM PUT CURSOR AT BOTTOM OF SCREEN 60
- INPUT " ";T\$: REM OBTAIN THE TIME 70
- 80
- PRINT D\$;"IN#0": REM RESTORE INPUT TO KEYBOARD PRINT D\$;"PR#0": REM RESTORE OUTPUT TO KEYBOARD 90
- VTAB 12: HTAB 10: REM CENTER THE OUPUT 100
- 110 PRINT T\$: REM OUTPUT TIME TO SCREEN
- GOTO 40: REM READ TIME AGAIN 120

OTHER DISPLAY FORMATS

The previous programs simply print the time as it is given by the clock. At times, it will be desireable to use different formats or to only use part of the time. The DATE AND TIME programs here print the time as:

DATE: OCTOBER 31, 1978 TIME: 12:3Ø:45.923

The time is read (Line 50 to 130) just as it was read in the previous section. Now, however, string manipulation is done to the time (T\$). In the Integer BASIC program Lines 160 through 210 show how to find just the month, day, etc. They are repeated here for convenience.

MONTH\$=T\$(1,2) DAY\$=T\$(4,5) HOUR\$ T\$(7,8) MINUTES=T\$(10,11) SECONDS=T\$(13,14) FRAC\$=T\$(16,18)

Table 3

INTEGER TIME STRING MANIPULATION

The various components of T\$ can then be manipulated to obtain the desired results. Lines 230 to 370 test the month string to determine the name of the month. The date and time can then be printed out in whatever format is desired.

The Applesoft program is slightly different. The time (T\$), however, is read in the same manner (Lines 50 through 130). To obtain the elements of T\$, the following string manipulations are done.

MTH\$=LEFT\$(T\$,2)
DAY\$=MID\$(T\$,4,2)
HOUR\$=MID\$(T\$,7,2)
MINUTE\$=MID\$(T\$,10,2)
SEC\$=MID\$(T\$,13,1)
FRAC\$=RIGHT\$(T\$,3)

Table 4

APPLESOFT TIME STRING MANIPULATION

```
O REM ******* DATE AND TIME
  4 REM *** INTEGER BASIC WITHOUT DOS ***
  5 REM
 10 DIM T$(25), MONTH$(10), DAY$(2), HOUR$(2), MINUTE$(2
    ), SECOND$(2), FRAC$(3), YEAR$(4): REM DIMENSION STRING
 20 SLOT=4: REM SET SLOT NUMBER
 25 YEAR$="1978": REM SET THE YEAR
 30 CALL -936: REM CLEAR THE SCREEN
 40 REM
 50 REM
         READ THE TIME
 60 REM
 80 IN#SLOT: REM
                    SET INPUT TO CLOCK BOARD
 90 PR#SLOT: REM
                    SET OUTPUT TO CLOCK BOARD
100 VTAB 23: REM
                   PUT CURSOR AT BOTTOM OF SCREEN
110 INPUT " ",T$: REM
                         OBTAIN THE TIME
120 IN#0: REM
                RESTORE INPUT TO KEYBOARD
130 PR#0: REM
                RESTORE OUTPUT TO CRT
135 REM
140 REM
        OBTAIN MONTH, DAY, HOUR, ... ECT
150 REM
160 MONTH$=T$(1,2)
170 DAY=T(4,5)
180 HOUR$=T$(7,8)
190 MINUTE$=T$(10.11)
200 SECOND$=T$(13,14)
210 FRAC$=T$(16.18)
220 REM
230 REM
        OBTAIN MONTH (JANUARY, FEBRUARY...)
240 REM
250 IF MONTH$="01" THEN MONTH$="JANUARY"
260 IF MONTH$="02" THEN MONTH$="FEBRUARY"
270 IF MONTH$="03" THEN MONTH$="MARCH"
280 IF MONTH$="04" THEN MONTH$="APRIL"
290 IF MONTH$="05" THEN MONTH$="MAY"
300 IF MONTH$="06" THEN MONTH$="JUNE"
310 IF MONTH$="07" THEN MONTH$="JULY"
320 IF MONTH$="08" THEN MONTH$="AUGUST"
330 IF MONTH$="09" THEN MONTH$="SEPTEMBER"
340 IF MONTH$="10" THEN MONTH$="OCTOBER"
350 IF MONTH$="11" THEN MONTH$="NOVEMBER"
360 IF MONTH$="12" THEN MONTH$="DECEMBER"
370 REM
380 REM
         PRINT DATE AND TIME ON SCREEN
390 REM
400 VTAB 10: TAB 10: REM
                             CENTER OUTPUT
410 PRINT "DATE: "; MONTH$; " "; DAY$; ", "; YEAR$
420 VTAB 12: TAB 10: REM CENTER OUTPUT
430 PRINT "TIME: "; HOUR$; ": "; MINUTE$; ": "; SECOND$; "."
    ;FRAC$
440 GOTO 8ø: REM
                   READ TIME AGAIN
```

```
REM *****
                DATE AND TIME
   REM *** APPLESOFT WITHOUT DOS ***
10
   REM
20 SLOT = 4: REM SET SLOT#
30 YEAR$ = "1978": REM SET YEAR
40
   HOME: REM CLEAR SCREEN
50
   REM
    REM READ THE TIME
60
70
    REM
80
                     SET INPUT TO CLOCK
    IN# SLOT: REM
    PR# SLOT: REM
                     SET OUTPUT TO CLOCK
90
                     PUT CURSOR AT BOTTOM OF SCREEN
     VTAB 23: REM
100
     INPUT " ";T$: REM
                           OBTAIN TIME
110
     IN# 0: REM
                   RESTORE INPUT TO KEYBOARD
120
     PR# 0: REM
                   RESTORE OUTPUT TO CRT
130
200
     REM
           OBTAIN MONTH, DAY, HOUR,...ECT
     REM
210
     REM
220
230 \text{ MTH} = LEFT$ (T$,2)
240 \text{ DAY$} = \text{MID$} (T\$.4.2)
250 \text{ HOUR} = \text{MID} (T\$, 7, 2)
260 \text{ MINUTE} = \text{MID} (T$, 10, 2)
270 \text{ SEC\$} = \text{MID\$} (T\$,13,2)
280 \text{ FRAC} = \text{RIGHT} (T\$.3)
300
     REM
310
     REM
            OBTAIN MONTH (JANUARY, FEBRUARY...)
320
     REM
330 MTH = VAL (MTH$): REM FIND DECIMAL # FOR MONTH
340
     RESTORE: REM INITIALIZE DATA
350
     FOR I = 1 TO MTH
360
     READ MTH$: REM FIND NAME OF MONTH
370
     NEXT I
            "JANUARY". "FEBRUARY". "MARCH". "APRIL". "MAY". "JUNE"
380
     DATA
            "JULY", "AUGUST", "SEPTEMBER", "OCTOBER", "NOVEMBER", "DECEMBER"
390
     DATA
400
     REM
410
          OUTPUT DATE AND TIME
     REM
420
     REM
430
     VTAB 10: HTAB 10: REM
                               CENTER OUTPUT
     PRINT "DATE: ";MTH$;" ";DAY$;", ";YEAR$
VTAB 12: HTAB 10: REM CENTER OUTPUT
440
450
     PRINT "TIME: "; HOUR$; ":"; MINUTE$; ":"; SEC$; "."; FRAC$
460
     GOTO 80: REM READ TIME AGAIN
470
```

Obtaining the name of the month in Applesoft is much easier since it is possible to change a string to its decimal value (Line 330). Then data can be read until the correct month is found (Lines 340 through 390). The time and date may then be printed in the desired format.

To print the time as AM or PM, add these lines to the Applesoft program.

```
290 HOUR = VAL (HOUR$): REM CHANGE HOUR$ TO DECIMAL
291 HR = HOUR
292 IF HR = 0 THEN HOUR = 12
293 IF HR > 12 THEN HOUR = HR - 12
294 AMPM$ = "AM"
295 IF HR > 11 THEN AMPM$ = "PM"
460 PRINT "TIME: "; HOUR; ": "; MINUTE$; ": "; SEC$; ". "; FRAC$
; " "; AMPM$; " "
```

Table 5 APPLESOFT AM/PM

To print the time as AM or PM, add or change these lines in the Integer BASIC program.

```
15 DIM HR10$(2), HR1$(2), AMPM$(2)
362 HR10$=HOUR$(1)
363 HR1$=HOUR$(2)
365 HR10= ASC(HR10$)-176
366 HR1= ASC(HR1$)-176
367 HOUR=(10*HR10)+HR1
368 HR=HOUR
369 AMPM$="AM"
370 IF HR=0 THEN HOUR=12
371 IF HR>12 THEN HOUR=HR-12
372 IF HR>11 THEN AMPM$="PM"
430 PRINT "TIME: "; HOUR; ": "; MINUTE$; ": "; SECOND$; "."; FRAC$; " "; AMPM$; " "
```

Table 6
INTEGER AM/PM

If the previous programs are going to be run with DOS, change or add these lines.

- 15 D\$="": REM D\$="CONTROL D"
- 16 PRINT D\$; "NOMONI,O,C": REM PREVENT DISK COMMAND FROM PRINTING ON SCREEN
- 80 PRINT D\$;"IN#";SLOT: REM SET INPUT TO C LOCK BOARD
- 90 PRINT D\$;"PR#";SLOT: REM SET OUTPUT TO CLOCK BOARD
- 110 INPUT " ",T\$: REM OBTAIN THE TIME
- 120 PRINT D\$; "IN#0": REM RESTORE INPUT TO KEYBOARD
- 130 PRINT D\$;"PR#0": REM RESTORE OUTPUT TO CRT

Table 7
PROGRAM CHANGES WITH DOS

ELAPSED TIME

Using the Apple Clock, simple programs may be written to measure the elapsed time between two events.

At the initial event, read the clock and save as a string, maybe T1\$. At the second event, read the time as T2\$. Then, using the subroutine in the following program located at location 3000, the total seconds to date (STD) since January 1, can be found for each of the two times. If they are subtracted, the elapsed time in seconds is easily found. These seconds can be changed to Days, Hours, Minutes and Seconds by the subroutine at Location 4000.

The following program measures the time between two carriage returns typed.

```
O REM *** ELAPSED TIMER PROGRAM
2 REM ****
            APPLESOFT WITH DOS
                                ***
   REM *** SUBROUTINES MAY BE USED IN YOUR PROGRAMS
20
25 REM
30 D$ = "": REM D$=" CONTROL D"
40
    PRINT D$; "NOMON I,O,C": REM DON'T PRINT DISK COMM
     ANDS
50
   HOME
60 SLOT = 4: REM SET CLOCK BOARD SLOT#
65
   REM
70
   REM IF L=0 NOT A LEAP YEAR, IF L=1 IT IS A LEAP Y
    EAR
80 L = PEEK (49280 + 16 * SLOT)
90 L = INT (L / 64)
95
   IF L > 1 THEN L = L - 2
96
   REM
100 REM
          T1$=THE INITIAL START TIME
110
           T2$=THE TIME AT A LATER TIME
    REM
    INPUT "HIT RETURN TO START TIMER "; A$
120
125
    PRINT
   GOSUB 2000: REM GET THE TIME
130
140 T1$ = T$: REM T1$=INITIAL START TIME
150
    INPUT "HIT RETURN AT DESIRED TEST TIME "; A$
155
    PRINT
160
    GOSUB 2000: REM GET THE TIME NOW
170 T2$ = T$: REM T2$=THE TEST TIME
    REM
200
210 REM FIND STD FOR T1$
220 T$ = T1$: GOSUB 3000:S1 = STD
230 REM FIND STD FOR T2$
240 \text{ T} = T2$: GOSUB 3000:S2 = STD
250 REM FIND ELAPSED TIME ET=S2-S1
260 ET = S2 - S1
290
    VTAB 10
    PRINT "THE ELAPSED TIME HAS BEEN "
300
```

310 PRINT ET: " SECONDS"

```
REM CONVERT TO DAYS, HOURS MINUTES, SEDONDS
510
     GOSUB 4000: REM SUBR TO CALC THIS
515
     VTAB 16
     PRINT "DAYS=":D
520
     PRINT "HOURS=";H
530
     PRINT "MINUTES=":M
540
550
     PRINT "SECONDS=":S
600
     END
2000
     REM
           *** SUBR - GET THE TIME
2005
      REM
2010 REM *** THESE NEED TO BE CHANGED IF DISK IS NOT
     USED
2030
      PRINT D$;"IN#";SLOT
      PRINT D$; "PR#"; SLOT
2040
      INPUT " ":T$
2050
      PRINT D$;"IN#0"
2060
      PRINT D$;"PR#0"
2070
2080
      RETURN
3000
      REM
           SUBR - STD
3005
      REM
3006
      REM
      REM
           CALCULATE SECONDS TO DATE FOR EACH TIME (ST
3010
     D)
            THIS IS THE NUMBER OF SECONDS SINCE JANUARY
3020
      REM
      1
3030
      REM
           DO THIS FOR STRING TIME T$
3040
             RETURN A NUMBER - STD
      REM
3050
      REM
3060
     REM FIND #'S FOR DATE AND TIME
3070 \text{ MT} = \text{VAL} (\text{MID} (T\$, 1, 2))
3080 D = VAL (MID$ (T$,4,2))
3090 H = VAL ( MID$ (T$,7,2))
3100 M = VAL ( MID$ (T$,10,2))
3110 S = VAL (MID$ (T$,13,6))
     REM CALCULATE DAYS TO DATE - DTD
3130
3135
     RESTORE
3140 \text{ DTD} = 0
      FOR I = 1 TO MT
3150
3160
     READ J
3170 DTD = DTD + J
3180
      NEXT I
             0,31,28,31,30,31,30,31,30,31,30,31
3200
      DATA
3205
     REM
             ADD IN DAYS AND LEAP YEAR DAY
3210 DTD = DTD + D
3230
      IF MT > 2 AND L = 1 THEN DTD = DTD + 1
3240
      REM FIND SECONDS TO DATE - STD
3250 \text{ STD} = \text{DTD} * 86400 + \text{H} * 3600 + \text{M} * 60 + \text{S}
3300
      RETURN
4000
     REM
      REM
4010
            SUBR - PUT SECONDS INTO DAYS, HOURS, MINUTE
     S, SECONDS
4020 REM GIVEN ET IN SECONDS
4040 D = INT (ET / 86400)
4050 \text{ ET} = \text{ET} - D * 86400
4060 H = INT (ET / 3600)
4070 \text{ ET} = \text{ET} - \text{H} * 3600
4080 M = INT (ET / 60)
4090 S = ET - M * 60
4100 RETURN
```

INTERVAL TIMER

In some applications it may be necessary to perform a task at a particular time.

The method to do this is as follows:

- 1. Obtain the current time from the clock.
- 2. Convert to seconds to date (STD) using the subroutine in the previous program.
- 3. Add to it the desired wait time in seconds, and save this time.
- 4. At various points in your program, check the time and find the current STD.
- 5. If the current STD is equal or greater than the desired time, it's time to perform the desired task.

THEORY OF OPERATION

THE HARDWARE

The Apple Clock hardware design is composed of four main sections: The clock counters, the PROM circuitry, the supply regulator, and the interrupt hardware.

Clock Counters

The counters are placed across the top of the PC board. A 1 MHz crystal controls the frequency. Three dual BCD up counters (U1, U2, U3) are used to divide the frequency down to obtain the units of time less than a second. Therefore, 1's 10's and 100's of milliseconds are available in BCD format.

Two 12-bit binary counters (U4, U5) provide the digits of 2^0 to 2^{23} seconds. A D-flipflop (U10) adds the last time digit of 2^{24} seconds.

A decoder (U13) is used to determine which digit is being read. It controls the enable lines on the Tri-State buffers (U14-U21).

The clock is set by first stopping the clock (reading from CØ8Ø+N6). Flipflop, UlO, keeps the clock stopped until a START clock command is issued. Once the clock is stopped, the ADVANCE 1 command advances the first 12-bit binary counter. An ADVANCE 2 command advances the counters U4 and UlO. Digits below a second cannot be set. They are automatically reset to zero when the clock is stopped. It is impossible to advance the clock when the clock is running. A 'WRITE PROTECT' switch on Pin 9 of UlØ prevents the clock from being accidentally changed.

ROM Access

An on-board ROM, U27, provides easily accessible software for the user. The flipflop made of U8 and U23 is set by a READ from CNØØ-CNFF. This causes Pin 11 of U8 to go high and stay there until the flipflop (U8, U23) is reset. The ROM can then be read from C8ØØ-CF7F. The ROM is shut off when a \$CFFF is addressed (U23), or when 'RESET' is hit.

The output buffers (U25, U26) are enabled by U6 which is dependent upon DEVICE SELECT, I/O SELECT, R/W or PROM ENABLE.

Regulator Circuit

There are two 5 volt supplies for the Apple Clock. One is derived from the 5 volts on the Apple bus. It is used to supply power to all the TTL circuits on the board. The other supply is derived from the +12 volts on the bus and regulated to +5 volts by U28. This regulator supplies the power for all the CMOS circuitry. When the Apple is turned off, the on-board battery supplies the CMOS circuitry, and keeps the clock running.

When the Apple is turned on, the battery is trickle-charged through R12. For faster charging time, R12 may be reduced at the expense of a shorter battery lifetime.

Interrupts

The Apple Clock is capable of generating interrupts on a regular basis. This means that the computer can be performing one task, and be interrupted to perform another task, then return back to the original program.

Interrupts may be enabled by writing a '1' to the set interrupt address, and disabled by writing an 'Ø' to the same address. Hitting 'RESET' will also disable interrupts.

The clock board will interrupt on one-second intervals when enabled. This one-second period is determined by which counter output drives Pin 11 of U11. The clock is factory set for 1-second intervals.

The procedure for handling interrupts is as follows:

- 1. Enable interrupts by writing a '1' to the SET INTERRUPT device select address.
- 2. Once a second, an interrupt will occur that will lower the IRQ line on the Apple bus if a higher priority peripheral (in a lower slot number) is not currently interrupting. The 'INT IN' line tells the clock board if a higher priority board is interrupting.
- 3. Along with the IRQ line going low, the INT OUT line will go low to tell lower priority boards that the clock is interrupting. This prevents them from interrupting.
- 4. If a higher priority board is interrupting, the clock will wait till it is done, and then the clock will interrupt.

- 5. If interrupts are enabled in software (CLI instruction), the Apple will perform a jump to an address contained in memory locations 3FE (low) and 3FF (high).
- 6. An interrupt automatically disables interrupts so that other interrupts may not occur immediately. Two forms of interrupt acknowledges must be performed to the Apple Clock to clear interrupts. One is 'CLEAR IRQ' which clears the IRQ line but not the 'INT-OUT' line. This procedure may be done to allow higher priority peripheral boards to interrupt, but not lower priority boards. To allow higher priority boards to interrupt, do a 'CLEAR IRQ' command early in the interrupt routine and do a 'CLEAR INT-OUT' command at the end of the interrupt routine to allow lower priority boards to interrupt. Before leaving the interrupt routine, both CLEARS should be performed so that other interrupting boards are not tied up and may perform their own interrupts.
- 7. To prevent the Apple Clock from interrupting, a 'Ø' may be written to the Set Interrupt address, or 'RESET' may be pressed.

THE SOFTWARE

The Apple II peripheral bus is memory mapped. Therefore, in order to talk to a particular device you must address its DEVICE SELECT address. The following table shows the relationship between the slot # the clock is in and the DEVICE SELECT address.

SLOT #	DEVICE SELECT HEX	ADDRESS DECIMAL
ø 1 2 3 4 5 6 7	CØ8Ø-CØ8F CØ9Ø-CØ9F CØAØ-CØAF CØBØ-CØBF CØCØ-CØCF- CØDØ-CØDF CØEØ-CØEF CØFØ-CØFF	(-16256)-(-16241) (-16240)-(-16225) (-16224)-(-16209) (-16208)-(-16193) (-16192)-(-16177) (-16176)-(-16161) (-16160)-(-16145) (-16144)-(-16129)

Table 8
DEVICE SELECT ADDRESSING

The following formula may also be used:

DEVICE SELECT ADDRESS = $$C\emptyset8\emptyset+NX = -16256+(16*N)+XN = SLOT #

X may have any value from $\$\emptyset$ to \$F(0-15). Please take note that a dollar sign (\$) before a number means the number is in HEX. The value of X determines the action the clock will take. Following is a table which shows the command for the clock.

X	COMMAND
ø	READ 2 ²⁰ -2 ²⁴ TIME BITS
1	READ 212-219TIME BITS
2	READ 24 -211TIME BITS
3	READ 100ms-23 TIME BITS
. 4	READ lmsecs-10msecs
5	START CLOCK
6	STOP CLOCK
7	ADVANCE ONE OR CLEAR IRQ
8	ADVANCE TWO OR CLEAR INT-OUT
9	SET INTERRUPT

Table 9
CLOCK COMMANDS

Suppose your Apple Clock is in Slot #4. The following table lists the addresses and commands. All commands except SET INTERRUPT should be done with a PEEK when in BASIC, or a LOAD instruction from Assembly language.

ADD	RESS	
HEX	DECIMAL	COMMAND
CØCØ	- 16192	READS 220-224 TIME BITS
CØC1	-1 6291	READS 2 ¹² -2 ¹⁹ TIME BITS
CØC2	- 1619Ø	READS 24 -211 TIME BITS
cøc3	- 16189	READS 100ms-23 TIME BITS
CØC4	- 16188	READS lms-10msec TIME BITS
CØC5	-16187	START CLOCK
cøc6	-16186	STOP CLOCK
CØC7	- 16185	ADVANCE ONE <u>OR</u> CLEAR IRQ
cøc8	-16184	ADVANCE TWO OR CLEAR INT-OUT
cøc9	-16183	SET INTERRUPT

Table 10 SLOT #4 EXAMPLE

To start the clock simply do a

PEEK(-16187) in BASIC

or LDA \$CØC5 in Assembly Language

In order to stop the clock:

PEEK(-16186) in BASIC

or LDA \$CØC6 in Assembly Language

READING DIGITS OF TIME

There are five digits of time ranging from 1's of milliseconds to 2^{24} seconds. The digits less than a second are in BCD format. Digits of seconds and above are in binary.

To read a digit of time either PEEK a location when in BASIC or do a LOAD instruction from that address in assembly language.

When reading the top byte of time, only the bottom 5 bits of this byte are used for time. This table shows the bit configuration for the top byte (the lowest device select address).

 $X = \emptyset$

	BIT	MEANING
MSB	7	(Ø) Clock Board Interrupting(1) Not Interrupting
	6	(1) Leap Year (Ø) Not Leap Year
	5	Not Used
1 !	4	2 ²⁴ Seconds
	3	2 ²³ Seconds
	2	2 ²² Seconds
	1	2 ²¹ Seconds
LSB	ø	2 ²⁰ Seconds

Table 11
TOP BYTE OF TIME CONFIGURATION

ROM FIRMWARE

The Apple Clock has an on-board ROM that allows easy access to the time. It may be accessed from BASIC or assembly language, and provides date and time information.

When in BASIC, the input routine switches may be set using the IN#n command. Following this by an INPUT statement, the ROM will be activated and send back the time to BASIC.

To stop the printout of the time from an INPUT statement, the printout switch may be set to the clock board by using the PR#n command. After reading the time, both switches should be set back to \emptyset for normal Apple operation (PR# \emptyset :IN# \emptyset).

When using assembly language, a call to CNØØ will give the time and place it in the following locations in the Apple input buffer:

ADDRESS	USE
#28# #281 #282 #283 #285 #285 #286 #288 #288 #288 #288 #288 #288 #288	Not Used Carriage Return l's milliseconds lØ's milliseconds lØ's milliseconds l's seconds lØ's seconds lØ's minutes lØ's minutes lØ's hours Space l's days lØ's days / l's months
Ø294	Space
Ø293 Ø294 Ø2AØ	10's months Space Counter
02A1	Temporary Storage

Table 12 ROM MEMORY USE

CHANGING ROMS

Your Apple Clock is shipped with a ROM which is a 2708 equivalent. At some later date you may wish to insert a 2716 PROM. This can easily be done by adding a few jumpers. On the PC board above the ROM notice there are numbers: 13, 11, 12, 8, 9 and 10. Follow these instructions for a 2716 PROM.

Connect 8 to 9 Connect 11 to 12

2716 PROM

OR ROM EQUIVALENT

Connect 8 to 10 Connect 11 to 13

2708 PROM OR ROM EQUIVALENT

SETTING THE FREQUENCY

Your Apple Clock has been factory assembled, burned in, and tested. The 1.0000MHz time base has been accurately set to within .001%. Vibrations or extreme temperatures can cause slight changes to the time base and may produce noticeable errors. If these errors are noticed, or if you desire to set this frequency more precisely for your environment, an accurate frequency counter and a small non-metallic screwdriver are required.

Connect the frequency counter with the ground lead to Pin 7 of U9, the positive lead to Pin 6, of U9. Adjust C1 for a frequency as close to 1.0000MHz as possible. Be sure the clock is at the same operating temperature as its normal environment.

WARRANTY

Your factory-built Apple Clock is warranted against defects in materials and workmanship for a period of six (6) months from the date of delivery. We will repair or replace products that prove to be defective during the warranty period, provided they are returned to Mountain Hardware, Inc. No other warranty is expressed or implied. We are not liable for consequential damages. We reserve the right to refuse to repair any product that in our opinion has been subjected to abnormal electrical or mechanical abuse. Products out-of-warranty are subject to a minimal service fee.

Please feel free to contact us if you have any questions or problems.